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Abstract
Ramsey theory is an area of combinatorics which is concerned with how large struc-
tures can become without containing various substructures. In this paper Ramsey
theory is discussed in the context of graph theory, which is one of the more common
ways of looking at it. We will discuss classical two-color graph Ramsey numbers, i.e.
the smallest values of n for which a complete graph on n points, where every edge
is colored either red or blue, must contain either a blue Kx or a red Ky. Various
known theorems for bounds on these numbers are discussed, and then implemented
in the programming language MATLAB. By using these routines we have been able
to duplicate many earlier calculations which various people have done by hand, and
have also been able to improve on one published bound: R(3, 15) ≤ 89 is sharpened
to 88. We also give a proof that R(3, 12) ≤ 59 (the best previously published bound
is 60) by examining possible graph structures.
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1. Introduction: What is Ramsey Theory?

Suppose that you are asked the following question: How many people must there
be at a party so that we can be absolutely certain that we have among them a group
of three people who either all know each other, or none of them know each other?
A useful mathematical tool for this type of problem (as well as many others)

is the branch of combinatorics known as graph theory. A graph in the context of
combinatorics can be thought of as a set of objects, which we will call vertices,
together with a set of relationships between them. There is a natural way to
visualize graphs: we can depict the vertices as points and the relationships as edges
between the points. If we are interested in all the possible relations between a given
number, say n, of objects, we can depict this situation using a complete graph: n
points with all possible edges drawn in. Figure 1 shows some complete graphs.

K1 K2 K4K3 K5K1 K2 K4K3 K5

Figure 1. Some complete graphs Kn

To use graph theory to solve the above problem, we can think of each complete
graph on n vertices as representing n people, and the edge between any two people
as representing the relationship between them. Now, we can color each edge of the
graph blue, if the two people joined by this edge know each other, or red if they do
not know each other. Our question above now becomes: How many vertices must
we have in a complete graph where every edge is either red or blue, before we are
certain that there somewhere in this graph exists either a red triangle or a blue
triangle?
Obviously, if we have three vertices it is possible to have a triangle, but it is of

course not necessary: We might have persons A and B knowing each other, say,
and both not knowing C.

CB

A

CB

A

Figure 2. A coloring of K3 with no monochromatic triangle

Next we want to examine the complete graph on four vertices: Is it possible to
color the edges of this graph so that there is neither a red triangle nor a blue one?
This is not hard to do, figure 3 shows one possible solution.
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Figure 3. A coloring of K4 with no monochromatic triangles

Five vertices require slightly more thought, but it is still possible to find a coloring
of this graph which has no triangles:

Figure 4. A coloring of K5 with no monochromatic triangles

If we try to find such a coloring for the complete graph on six vertices, we run into
trouble. Using trial and error it seems impossible to find a triangle-free coloring,
but to verify that no such coloring exists we need a proof. Here is one way to do it:
Choose one of the vertices and label it v. Notice that in a complete graph on six

vertices, each vertex has five edges adjacent to it. No matter how we color the five
edges which are adjacent to v, we can be certain that at least three of them have
the same color. We can assume these three edges are all blue, and label the three
vertices adjacent to them a, b, and c. Next we examine the edges ab, bc and ca: If
any one of these three edges is blue (for example ab), then that edge forms a blue
triangle with the two edges adjacent to v (va and vb). But if none of ab, bc and ca
are blue, then all three must be red and we have a red triangle. Of course the same
argument can be applied if our three original edges are all red.

cv

ba

cv

ba

Figure 5. A proof that any coloring of K6 must contain at least
one monochromatic triangle
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Thus we have proved that it is impossible to have a coloring of the complete
graph on six vertices that does not somewhere include either a red triangle or a
blue triangle, or in the context of people in a room that we discussed earlier that
if we have six people in a room we can be certain that there is a trio where either
all three know each other or all are strangers.
Problems like this are the basis of the branch of mathematics known as Ramsey

theory. The basic question asked is usually ”How large a structure can we have
without being certain that it contains a certain substructure?”. One of the main
theorems of Ramsey theory can be stated (somewhat informally) as ”Total disorder
is impossible”, or in other words: If we have a randomly (dis-) organized structure
we can be sure that some small part of it is ordered. One of the usual ways of
looking at Ramsey theory is in the context of graph theory. We examine colorings
of graphs and try to determine which conditions that apply; how large the graphs
can be without containing certain substructures. In this paper we will concern
ourselves mainly with the following question: If we have a complete graph G on n
vertices where every edge is colored either blue or red, what is the smallest value
of n that guarantees the existence of either a complete graph on x vertices which
is blue, or a complete graph on y vertices which is red?
In the example above the question was what number of vertices is required in

a two-color complete graph to guarantee the existence of a triangle (which is a
complete graph on three vertices) which is either red or blue. In the terminology of
Ramsey theory, this question is ”What is the value of R(3, 3), the so-called Ramsey
number?” As we saw, the answer to this question is 6. The obvious next question
is now: if R(3, 3) is 6, what is for example R(3, 4)? (In other words, how large a
complete graph must we have to guarantee the existence of either a red triangle or
a complete graph on 4 vertices?) We can of course continue in this way: What are
R(4, 4), R(4, 5), R(5, 5) and so on? It turns out that the answers to these questions
and other similar ones are far from obvious; so far no one has found a general
procedure for finding solutions to problems of this sort aside from programming
a computer to test all possible combinations, and the number of computations
involved grows so quickly that to compute R(5, 5) by this method would probably
take several hundred years of computer time.
The rest of this paper will be devoted to examining the techniques in this field

which have been developed by various people over the years, and to an implementa-
tion of these techniques in the programming language MATLAB. We have written a
package of MATLAB functions, called FRANK after Frank Ramsey, who originated
Ramsey Theory in 1930. (Or for those who think that computer programs should
have acronyms as names, First Ramsey ANalysis Kit). One of the most promising
techniques is to examine the number of edges possible in a graph which satisfies the
desired conditions: If we examine the possible colorings of the graph on 4 vertices
which is shown in figure 3, we can see that we do not have to have exactly three
edges of each color to ensure that there are no triangles in either color. In fact, it
is possible to have two, three or four edges which are the same color and still have
no triangle (see figure 8 in section 4.3) but five edges of the same color would mean
that there has to be a triangle. Many interesting conclusions can be drawn by using
these edge number values, (called e) and so a large part of FRANK is devoted to
calculation of these e-numbers.
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2. Terminology and basic definitions

The following definitions will be used throughout:
A graph G = (V,E) is formally a set V of vertices together with a set E of edges,

which are unordered pairs from the set V . All graphs considered in this paper are
simple (any two vertices are connected by at most one edge), undirected (an edge
from a to b is considered to be equivalent to an edge from b to a) and free of loops
(there can be no edge from a vertex to itself).
A subgraph H of a graph G is a subset of the vertices in G together with all the

edges from G between these vertices. (Note that this is often elsewhere known as
an induced subgraph)
The complement of a graph G = (V,E) is designated G and is defined as the

graph (V,Kn \E) or in other words is the graph on the same vertices as G with all
the possible edges between them which are not in G.

A walk in a graph G is a sequence of vertices v1, v2, v3... where there exists an
edge between each two consecutive vertices.
A path in a graph G is a walk where no vertex is repeated. Paths will be

designated by the number of vertices they contain: i.e. P3 is the path which has
three vertices and two edges. A path from v to v (with no other repeated vertices)
is called a cycle, and a g-cycle is a cycle with g vertices..
The girth of G is the least value of g for which G contains a g-cycle or ∞ for a

graph with no cycles.
The link of a vertex, lk(v), is the set of edges adjacent to v.
The degree or valence of a vertex, deg(v), is the number of edges adjacent to v,

or in other words deg(v) = |lk(v)|.
The second degree of a vertex, deg2(v), is the sum of the degrees of the vertices

adjacent to v.
A k-regular graph is a graph where the degree of every vertex is exactly k.
The complete graph Kn is the graph on n vertices with all

¡
n
2

¢
possible edges.

(Note that Kn is thus (n− 1)-regular)
The bipartite complete graph Km,n is the graph on m+ n vertices where each of

the m vertices has an edge to each of the n vertices, but there are no other edges.
The multipartite complete graph Km,n,o...is defined analogously.
An n-coloring of a graph G is formally a partition of the edges of G into n classes

(colors).
The independence number I(G) of a graph G is defined as the largest possible

number of vertices which can be selected in G so that no two are adjacent to the
same edge.
The clique number C(G) is defined as the number of vertices in the largest

possible complete subgraph of G.

G is called an (x, y)-graph if x > C(G) and y > I(G).
The number e(x, y, n) is defined as the minimum number of edges possible in

an (x, y)-graph on n vertices. If there are no possible (x, y)-graphs on n vertices,
e(x, y, n) is defined to be ∞.
An (x, y)-graph with n vertices and e edges is often called an (x, y, n)-graph or

an (x, y, n, e)-graph.
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3. Summary of known results

The two-color Ramsey number R(x, y) is defined as the smallest number n such
that a red-blue coloring of the complete graph Kn must contain either a blue Kx or
a red Ky. This can also be expressed in terms of independence and clique numbers
for the subgraph which consists of all the blue edges in such a coloring: R(x, y) is
the smallest number n such that there is no (x, y)-graph on n vertices, or in other
words, all graphs with n or more vertices must contain either a clique on x vertices
or an independent set on y vertices (corresponding to a red Ky in the two-colored
graph.).
It is easy to see that R is symmetric in x and y by simply interchanging the red

and blue edges, so we have R(x, y) = R(y, x). This also implies that if we have an
(x, y)-graph G, then G must be a (y, x)-graph.
The existence of the number R(x, y) for all x and y was proved by Ramsey in

1930. His original proof, as well as a modern rephrasing of it, are given in [2].
Theorem 2 is a special case of Ramsey’s theorem.
A partial table of known values and bounds for R(x, y) is given below:

x
y

3 4 5 6 7 8 9 10 11 12 13 14 15

3
61 91 142 183 233 284 365

40
436

46
517

52
598

59
697

66
787

73
889

4
18 25 35

41
49
61

55
84

69
115

80
149

96
191

128
238

131
291

136
349

145
417

5 43
49

58
87

80
143

95
216

116
316

141
442

153 181 193 221 237

x
y

16 17 18 19 20 21

3 79
9910

92
11010

98
12110

106
13310

109
14510

122
15810

These values, with the exception of the boldface values, are taken from reference
[6]. A complete list of references for the above table is given there. For many values,

it is necessary to calculate values of e(x, y, n). A table of these values is given in
appendix B.
1. These two values follow immediately from the upper- and lower-bound in-

equalities, theorems 4 and 5.
2. This value can be calculated using the computational system FRANK. It is a

fairly simple consequence of recursive formulas for bounds on the number of edges
in an (x, y)-graph.
3. Graver and Yackel proved these by hand in [3].
4. McKay and Ke Min proved R(3, 8) to be exactly 28 in [5], by using computer

algorithms to eliminate all possible (3, 8, 28)-graphs.
5. Grinstead and Roberts originally proved this in [4] by using computer algo-

rithms. We have been able to achieve the same bound using FRANK with edge-
number values from [3], [4], and [7] as input.

6. This is also proved in [4].
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7. These bounds are proved by Radziszowski and Kreher in [7]. We have been
able to calculate the same values by using FRANK and several edge-number values
from [1], [3], [4] as well as some of the edge-number values given in [7].
8. This bound is given as 60 in [6]. In chapter 5 we prove that this can be

sharpened to 59 by examining possible cases..
9. This bound is given as 89 in [6], but using FRANK we have sharpened it to

88 by using edge-number values calculated in [1], [3], [4], [5] and [7].
10. These are the upper bounds calculated by FRANK, using all available results

mentioned above. We have not seen other published values for x ≥ 16.

4. Theorems and calculational methods

4.1. Some useful notation and definitions. A very useful idea in this area is
the idea of preferring a vertex, and thus decomposing a graph G into three distinct
subgraphs. This is done in the following way: For any graph G, let v be a vertex
in G. Now consider all the vertices of G which are joined to v by an edge. These
vertices, together with any edges joining them, form a subgraph of G which we
will call H1(v). The vertices different from v and not contained in H1(v) span
another graph which we will call H2(v). So we now have three distinct subgraphs:
the vertex v, H1(v) and H2(v). The graphs H1(v) and H2(v) will sometimes be
denoted simply by H1 and H2, or, if there are several graphs under consideration,
by H1(G, v) and H2 (G, v). Note that if the graph G contains no triangles, then for
any v H1(v) consists only of disjoint vertices, since an edge joining any two of the
vertices in H1(v) would imply that these two vertices formed a triangle with the
vertex v in G.

G H1 H2

v

G H1 H2

v

Figure 6. Decomposition of a graph G into H1(v) and H2(v)

Lemma 1. If G is an (x, y)-graph and v is any vertex in G, then H1(v) is an
(x− 1, y)-graph and H2(v) is an (x, y − 1)-graph.
Proof. For any vertex v in G, let H1 denote the subgraph of vertices joined to v as
defined above. Now any set of independent vertices in H1 must also be independent
in G, since there are no more edges between these vertices as seen as vertices in
G than there are in H1. Since we know that I(G) < y because G is an (x, y)-
graph, we have I(H1) ≤ I(G) < y. If we consider the clique numbers instead we
have the following relationship: If H1 contains a complete subgraph on k vertices,
then the graph spanned by these vertices and the preferred vertex v is a complete
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subgraph on k + 1 vertices, since v has an edge to every vertex in H1. Thus
C(H1) ≤ C(G)− 1 < x− 1, so H1 is an (x− 1, y)-graph.
To show that H2 is an (x, y − 1)-graph, first note that the clique number of H2

cannot be greater than the clique number of G, and then that any independent set
in G of size y becomes an independent set of size y−1 in H2, since we have removed
the vertex v.

4.2. Simple upper and lower bounds for Ramsey numbers.

Theorem 1. R(2, y) = y

Proof. A (2, y)-graph is a graph that contains no 2-clique, and since a 2-clique in
a graph is an edge, this means that a (2, y)-graph consists completely of disjoint
vertices. As soon as we have y of these we have an independent y-set, so R(2, y) =
y.

Corollary 1. R(x, 2) = x (since R is symmetric)

Theorem 2. R(x, y) ≤ R(x, y − 1) + R(x − 1, y) , the strict inequality holding if
R(x, y − 1) and R(x− 1, y) are both even.
This theorem is a special case of Ramsey’s theorem. To prove it we will first

prove a lemma.

Lemma 2. If G is an (x, y)-graph on n vertices then the maximum possible valence
for any vertex in G is R(x − 1, y) − 1, and the minimum possible valence is n −
R(x, y − 1).
Proof. Since H1 is an (x− 1, y)-graph, we must have deg(v) < R(x− 1, y) for any
vertex v in G. Since H2 is an (x, y − 1)-graph we must have deg(v), the valence of
v in G, < R(x, y − 1). But deg(v) + deg(v) must equal n− 1, since for each of the
n vertices in G except v itself there either is an edge between them in G or in G .
Hence deg(v) > (n− 1)−R(x, y − 1).
Proof. Now we are ready to prove our theorem: The first inequality follows from
the fact that the minimum valence in any graph must be less than or equal to the
maximum valence:
n−R(x, y − 1) ≤ R(x− 1, y)− 1
n ≤ R(x− 1, y) +R(x, y − 1)− 1
we observe that the existence of an (x, y) graph on n vertices implies that n ≤

R(x, y)− 1:
R(x, y)− 1 ≤ R(x− 1, y) +R(x, y − 1)− 1.
Now assume equality when R(x, y − 1) and R(x − 1, y) are both even. In this

case there must exist a graph G with n = R(x, y− 1)+R(x− 1, y)− 1 vertices, and
n must be an odd number.
Now from the above lemma we have that for every vertex v in G:
deg(v) ≥ n−R(x, y−1) = R(x, y−1)+R(x−1, y)−1−R(x, y−1) = R(x−1, y)−1
and also that
deg(v) ≤ R(x− 1, y)− 1
hence every vertex has valence exactly R(x − 1, y) − 1, which must be an odd

number since R(x−1, y) was even. But this would imply that G has an odd number
of points of odd valence, which is impossible.
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n−R(x, y − 1) ≤ R(x− 1, y)− 1
n ≤ R(x− 1, y) +R(x, y − 1)− 1
we observe that the existence of an (x, y) graph on n vertices implies that n ≤

R(x, y)− 1:
R(x, y)− 1 ≤ R(x− 1, y) +R(x, y − 1)− 1.
Now assume equality when R(x, y − 1) and R(x − 1, y) are both even. In this

case there must exist a graph G with n = R(x, y− 1)+R(x− 1, y)− 1 vertices, and
n must be an odd number.
Now from the above lemma we have that for every vertex v in G:
deg(v) ≥ n−R(x, y−1) = R(x, y−1)+R(x−1, y)−1−R(x, y−1) = R(x−1, y)−1
and also that
deg(v) ≤ R(x− 1, y)− 1
hence every vertex has valence exactly R(x − 1, y) − 1, which must be an odd

number since R(x−1, y) was even. But this would imply that G has an odd number
of points of odd valence, which is impossible.

Theorem 3. R(x, y) ≥ R(x, k) +R(x, y − k + 1)− 1

Proof. We consider the disjoint unionG of two graphsG1 andG2.The clique number
of G must be equal to the larger of the clique number of G1 and the clique number
of G2, since no new cliques can be formed by taking the disjoint union. The
independence number of G, on the other hand, must be equal to the sum of the two
independence numbers. Now let G1 be an (x, k)-graph and G2 be an (x, y− k+1)-
graph. Since an (x, k)-graph can have up to R(x, k)− 1 vertices from the definition
of R(x, k), we can see that G can have up to R(x, k) − 1 + R(x, y − k + 1) − 1 =
R(x, k) + R(x, y − k + 1) − 2 vertices. But G has clique number less than x and
independence number at most k−1+y−k = y−1, soGmust be an (x, y)-graph. This
means that R(x, y) must be greater than or equal to R(x, k)+R(x, y−k+1)−1.

I(G1)=2
C(G1)=2

I(G2)=3
C(G2)=1

I(G)=5
C(G)=2

I(G1)=2
C(G1)=2

I(G2)=3
C(G2)=1

I(G)=5
C(G)=2

Figure 7. The disjoint union of an (x, k)-graph and an (x, y−k+
1)-graph is an (x, y)-graph



11

4.3. e-numbers and E-numbers. It is often very useful to consider the number
of possible edges in a graph, and for this purpose we will define some numbers.
The number e(x, y, n) is defined as the minimum number of edges possible in

an (x, y)-graph on n vertices. If there are no possible (x, y)-graphs on n vertices,
e(x, y, n) is defined to be∞. This definition leads to the following relationship: For
the lowest value of n for which e(x, y, n) = ∞, R(x, y) = n. A table of values for
e(x, y, n) is given as appendix B.
Sometimes it is also useful to calculate a similar number, E: E(x, y, n) is the

maximum number of edges possible in an (x, y)-graph on n vertices. A simple
example to clarify this: for a graph on four vertices with no triangles and no
independent set of size three or greater, we can see that there are exactly three
possibilities:

Figure 8. The three possible (3, 3, 4)-graphs.

From this we can conclude that e(3, 3, 4) = 2, and E(3, 3, 4) = 4.

4.4. Upper and lower bounds for e and E. As for Ramsey numbers there are
several trivial values of e for small values of y and n:
• for y > n, e(x, y, n) must be 0
• if y = 1 we would have to have a graph with no vertices, so e =∞
• if y = 2 we cannot have any independent set of size 2, so all graphs must be
complete if they exist at all:
— if n ≤ x− 1 we have a complete graph, so there are ¡n2 ¢ edges
— if n > x−1 we would have to have a graph on n vertices with no x-clique,
which is impossible so e =∞

• similarly for x = 2: if n ≤ y− 1 we have no edges so e = 0, and for n ≥ y the
e-number does not exist

• if x = 3 we have an upper bound for E: bn(y − 1)/2c since each vertex can
have degree at most y− 1 (otherwise H2 would be an independent y-set) and
we can find the total maximum number of edges by observing that multiplying
the n vertices by the maximum valence y− 1 counts each edge exactly twice.

Theorem 4. e(x, y, n) ≤ e(x, y − l + 1, n−m) + e(x, l,m)
Proof. This is really the same theorem as theorem 2. If we examine the disjoint
union of an (x, y−l+1)-graph on n−m vertices and an(x, l,m)-graph on m vertices
we can see that this must be an (x, y, n)-graph on n vertices.

Theorem 5. (Turán 1941)
There is a graph G = (V,E) with |V | = n and |E| = e which contains no k-clique

iff
0 ≤ e ≤ ¡n2¢ − (q−1)n+(q+1)r

2 where n = q(k − 1) + r, 0 ≤ r < k − 1. The upper
equality holds iff G = Kq+1,...,q+1,q,...,q with r copies of q + 1 and k − 1− r copies
of q.
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Proof. The proof of this can be found in most books on graph theory. We will only
give a proof for the case k = 3, since we will mostly be concerned with triangle-free
graphs. In this case, the theorem reduces to e ≤ ¥

n+1
2

¦ ∗ ¥n2 ¦ (e ≤ n2

4 for even

n, e ≤ n2−1
4 for odd n), and equality holds iff G is the complete bipartite graph

Kbn+12 c,bn2 c.
The proof is by induction on n: For n = 3 we have e ≤ 2 and we can see that

K1,2 is a graph on 3 vertices with 2 edges and no triangles. For n = 4 we have
that e ≤ 4 and we can see that K2,2 is the largest possible triangle-free graph on
4 vertices. Now let G be a graph on n vertices with e edges and no triangles, and
assume the theorem for lower numbers of vertices.
Now, we have that each induced subgraph G0of G on n − 1 vertices has at

most
¥
n
2

¦ ∗ ¥n−12 ¦
edges by induction. We first assume that there is no subgraph

with the maximum number of edges. We define the density of edges in a graph
G as the number of edges in G divided by the number of edges in the complete
graph on the same number of vertices, which can be seen as the probability of an
edge existing between any two vertices. This gives us that the density of edges
in G0 must be ≤ ¡¥

n
2

¦ ∗ ¥n−12 ¦− 1¢ /¡n−12 ¢ = ¡¥
n
2

¦ ∗ ¥n−12 ¦− 1¢ ∗ 2
(n−1)(n−2) ≤

(n−1)2−4
4 ∗ 2

(n−1)(n−2) =
(n2−2n−3)
2(n−1)(n−2)

which must be less than the total density of edges in G:
e ≤ ¡n2¢ ∗ (n2−2n−3)

2(n−1)(n−2) =
n(n−1)

2 ∗ (n2−2n−3)
2(n−1)(n−2) =

n(n2−2n−3)
4(n−2) < n(n2−2n)

4(n−2) = n2

4

For the second part of the theorem,. assume that there is a subgraph with the
maximum number of edges. By induction it must then be Kbn2 c,bn−12 c.
If we now add an nth vertex v to this graph , we see that v cannot have neighbors

in both parts of the bipartite complete graph, since this would imply a triangle.
Thus for the new graph to have the maximum possible number of edges, there must
be an edge from v to every vertex in the larger part of the bipartite graph. But the
graph so formed is exactly Kbn+12 c,bn2 c.

Theorem 6. (This theorem is called the delta inequality and was first proved in
[3].)
If G is a (3, y)-graph on n vertices with e edges, then

ne ≥
y−1P
i=0

©
e(3, y − 1, n− i− 1) + i2ª vi

where vi is the number of vertices of degree i.

The non-negative function ne −
y−1P
i=0

©
e(3, y − 1, n− i− 1) + i2ª vi is often de-

noted by ∆.

Proof. First we prove a simple lemma: for any graph G,P
v
deg2(v) =

P
v
(deg(v))2

This is proved by counting the number walks of length 2 in G in two different
ways. deg2(v) is equal to the number of walks v1 − v2 − v3 where v1 = v, and
(deg(v))2 is the number of walks v1 − v2 − v3 where v2 = v. Summing this over all
vertices gives the desired result.
Now, if we have an (x, y)-graph we can prefer a vertex v as in section 4.1. The

total number of edges in G must equal the number of edges in H2 plus the number
of edges that were removed, and this number is simply deg2(v):
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deg2(v) + e(H2) = e
thus,
deg2(v) + e(3, y − 1, n−deg(v)− 1) ≤ e
(If we prefer a vertex with degree deg(v) , H2 will have n−deg(v) − 1 vertices

since we have removed the vertex v and its neighbors, of which there are exactly
deg(v).)
Summing this over all vertices, we getP
v
deg2(v) + e(3, y − 1, n−deg(v)− 1) ≤ ne

which, using our lemma, is equivalent toP
v
(deg(v))2 + e(3, y − 1, n−deg(v)− 1) ≤ ne

Now, if deg(v) = i, and vi is the number of vertices of degree i, we can sum the

inequality over the possible valences for v:
y−1P
i=0

©
i2 + e(3, y − 1, n− i− 1)ª vi ≤ ne

.

Theorem 7. (Radziszowski/Kreher 1988)
For k ≥ 2

e(3, k + 1, n) =


0 if n ≤ k
n− k if k < n ≤ 2k
3n− 5k if 2k < n ≤ 5k/2
5n− 10k if 5k/2 < n ≤ 3k

when n ≥ 2.5k we have that the minimum valence is ≥ 2
for n > 3k, we have that e(3, k + 1, n) ≥ 5n− 10k.
We will first prove three lemmas. In each case, G is a minimum (3, k+1, n)-graph.

Lemma 3. If a component of G is a cycle, then it is a pentagon.

Proof. Let Ci be a cycle component in G of length i, i 6= 5. We know that i ≥ 4
since G has no triangles. But if we now replace Ci with i/2 isolated edges if i is
even, or a pentagon and (i−5)/2 isolated edges if i is odd, we will get a graph with
fewer edges and the same independence number.

Lemma 4. If G has an isolated vertex, then all vertices in G are of degree less
than 2.

Proof. If v is an isolated vertex and w is a vertex of degree ≥ 2, we can delete all
vertices adjacent to w and join v and w by an edge. Again, this is a (3, k + 1, n)-
graph with fewer edges than G.

Lemma 5. All vertices of degree exactly 1 are endpoints of isolated edges.

Proof. If w is a vertex of degree ≥ 2 which is connected to a vertex v of degree 1,
we can delete all other edges adjacent to w and we have a (3, k + 1, n)-graph with
fewer edges than G.

Proof. Now we can return to the proof of the theorem. The proof is by classification
of the possible graph structures. The case n ≤ k is obvious since a graph on n
vertices with no edges still has no independent set of size k + 1.
k < n ≤ 2k:
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Figure 9. Graphs with the same independence number but fewer edges

We will prove that a minimum graph in this case must consist only of isolated
vertices and isolated edges. Assume that the graph G is a minimum (3, k + 1, n)-
graph on e ≤ n−k edges, and let i be the number of isolated vertices in G. If i > 0,
then by the second lemma above G consists only of isolated vertices and isolated
edges. We then have that i+ e ≤ k and n = i+ 2e, which yields e ≥ n− k. Thus
we must have e = n− k and i = n− 2e = 2k − n. Thus G must consist of 2k − n
isolated vertices and n− k isolated edges.
If i = 0, then G has only isolated edges and there are exactly n− k of them.
2k < n ≤ 5k/2 :
For this case we use induction on k to prove that a minimum graph must consist

only of pentagons and isolated edges. We begin by verifying the theorem for k = 2:
Since 4 < n ≤ 5 we have n = 5 and thus 3n − 5k = 15 − 10 = 5. This gives
e(3, 3, 5) = 5 and we know that the pentagon is the unique (3, 3) graph on 5
vertices. Now assume that G is a minimum (3, k + 1, n)-graph with e ≤ 3n − 5k
edges. There are two cases; either G has a vertex of degree 2 or it does not.
If there is no vertex of degree 2, then we must have at least one vertex v which

has degree at least 3, since otherwise we would have only vertices of degree 0 or
1 and we would be in the case n ≤ 2k. We have that n−deg(v) − 1 ≤ n − 4 ≤
5k/2 − 4 ≤ 5(k − 1)/2. If we prefer v in G and use the inductive assumption,
H2 is a (3, k, n− deg(v)− 1)-graph with e(H2) ≥ 3(n−deg(v) − 1) − 5(k − 1) for
n−deg(v)− 1 > 2(k− 1) or e(H2) ≥ n−deg(v)− k for n−deg(v)− 1 ≤ 2(k− 1). In
both these cases, e(H2) ≥ e− 7, which implies that 3 ≤deg2(v) ≤ 7. Thus v would
have to have at least one vertex of degree 1 as a neighbor (since there is no vertex
of degree 2) which contradicts part (c) of the lemma.
If there is a vertex v of degree 2, then if we prefer v H2 is a (3, k, n− 3)-graph

with e−deg2(v) edges. Now since n ≤ 5k/2 we know that n− 3 ≤ 5(k− 1)/2 so by
induction we have that the number of edges in H2 is at least 3(n − 3) − 5(k − 1)
for n > 2k + 1 or at least (n − 3) − (k − 1) for n = 2k + 1. In both cases, since
e ≤ 3n − 5k, we have that 2 ≤deg2(v) ≤ 4. But if deg2(v) ≤ 3 then v would
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have to be adjacent to at least one vertex of degree 1, which contradicts part (c)
of our lemma since v has degree 2. Thus we must have deg2(v) = 4, and since this
applies to all vertices of degree 2 (including v’s neighbors) this implies that v is part
of a cycle and we see that G must consist only of cycles and isolated edges. But
lemma 1 implies that any cycle must be a pentagon, and thus by counting the total
number of pentagons and isolated edges we can show that G must consist of exactly
5k−2n isolated edges and n−2k pentagons. (Each isolated edge contributes 1 to a
maximum independent set, while each pentagon contributes 2.) G is a (3, k + 1, n)-
graph with e = 3n − 5k edges, since we in total have 2(5k − 2n) + 5(n − 2k) = n
vertices, 5k − 2n+ 5(n− 2k) = 3n− 5k edges, and the maximum independent set
(given by the reasoning above) has 5k − 2n+ 2(n− 2k) = k vertices.
5k/2 < n:
For the final two parts of this theorem, we will begin by proving the last part

which states that e(3, k + 1, n) ≥ 5n− 10k for n ≥ 2.5k. (This statement is in fact
true for all n > 0, which can be easily proved by applying the first three sections
of the theorem.) After we have proved this we will construct a family of graphs for
which the equality holds when 5k/2 < n ≤ 3k.
We use induction on k: For k = 2 we would have to have n > 5, but we know

that there are no (3, 3)-graphs on more than 5 vertices. For k = 3 we have n > 7.5
and we know that e(3, 4, 8) = 10, (This is an immediate consequence of the trivial
lower bounds and the delta inequality. A concrete proof can also be found in [3])
so the inequality holds for this case.
Now suppose G is a minimum (3, k + 1, n)-graph for some k ≥ 4, n > 5k/2 and

e < 5n− 10k, and let vi be the number of vertices in G of degree i. (Our goal is of
course to prove that there can be no such graph) We now apply the delta inequality

(theorem 6) and induction to G: 0 ≤ ∆(G, k + 1, n, e) = ne−
kP
i=0
vi(i

2 + e(3, k, n−

i− 1)) ≤ ne−
kP
i=0
vi(i

2 − 5i+ 5n− 10k + 5)

Since
kP
i=0
vi = n we have

0 ≤ ∆(G, k + 1, n, e) ≤ n(e− (5n− 10k − 1))−
kP
i=0
vi(i− 2)(i− 3)

The coefficient (i − 2)(i − 3) is always ≥ 0 (since i is an integer), so the above
inequality and e < 5n− 10k imply that e = 5n− 10k − 1. This gives us ∆(G, k +
1, n, e) = 0 which implies that G has only vertices of degree 2 and 3. Thus all
the vertices of G are full (a full vertex is a vertex where the number of edges in
H2(v) = e(x, y − 1, n−deg(v) − 1)) and thus for any vertex v in G deg2(v) = 4 if
deg(v) = 2, or deg2(v) = 9 if deg(v) = 3. Thus every component of G is either a
cycle (if all vertices are of degree 2) or a 3-regular graph.
In the first case, we have by part (a) of the lemma that G is a disjoint union of a

pentagon and some (3, k−1, n−5, 5n−10k−6)-graph, call it H. But by induction,
H cannot exist since 5(n− 5)− 10(k − 2) > 5n− 10k − 6.
The only possibility that remains is forG to be a 3-regular minimum (3, k + 1, n, e)-

graph, which has e = 3n/2 edges since it is 3-regular. But since we also have that
e = 5n− 10k − 1, we must have 7n = 20k + 2, or k = 2mod7. Thus we have that,
for some p ≥ 0, G is a 3-regular (3, 10 + 7p, 26 + 20p, 39 + 30p)-graph. To prove
this part of our theorem, we must thus prove that no such graph can exist.
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If we prefer a vertex v in G, we have that H2 must be a (3, k, n, e)-graph, where
n = n − 4 and e = 3n/2 − 9 (since G is 3-regular). Note that H2 is a minimum
(3, k, n)-graph, since e(3, k, n − 4) ≥ 5n − 10k − 10 by induction, and since k =
(7n−2)/20, this gives us 5n−10k−10 = 5n− (7n−2)/2−10 = 5n−7n/2−9 = e.
We now show that H2 can have only vertices of degree 2 and 3: obviously there

are no vertices of degree greater than 3 sinceH2 is a subgraph of the 3-regular graph
G. If there were an isolated vertex, then by part (b) of the lemma H2 would have
at most n/2 edges, which is a contradiction for n ≥ 26 since we have e = 3n/2− 9.
A vertex of degree 1 implies by part (c) of the lemma that H2 is a union of an
isolated edge and a (3, k − 1, n − 2, e − 1)-graph. But such a graph cannot exist,
since by induction we have that e(3, k − 1, n− 2) ≥ 5n− 10k − 10 = e.
Thus H2 has only vertices of degrees 2 and 3, and by counting edges we see that

it has 6 vertices of degree 2 and n− 10 of degree 3. If we now examine a vertex u
in H2 which has degree 2, then we see that deg2(u) ≤ 5 (with respect to H2, not
to G) since e(3, k − 1, n− 3) ≥ 5(n− 7)− 10(k − 2) = e− 5. Thus any 2-vertex in
H2 has at least one neighbor of degree 2. If we consider the subgraph F induced
by the six 2-valent vertices, we see that F cannot have isolated vertices since this
would imply deg2(u) = 6. Nor can F have a pentagon, since there are six vertices
altogether and this would imply an isolated vertex. But since all components of
a graph with maximum valence 2 must be either cycles or paths, and we know
from part (a) of the lemma that any cycle must be a pentagon, we see that the
only possibility is for F to consist of a union of paths. We will now show that the
only possibility here is for F to consist of exactly 3 isolated edges: If there exists
a vertex w which is the starting vertex of a path in F of length greater than 2,
we remove this vertex w and its neighbors, of which one is also in F . This then
implies that the third vertex of this path, call it u, has degree at most 1 in the
remainder of the graph H2. But on the other hand, this remaining graph must
have n = n− 7 vertices and independence number k = k− 2. We have removed 14
edges, which gives e = e− 14 ≤ 5n− 10k − 14 = 5(n+ 7)− 10(k + 2) ≤ 5n− 10k.
Thus n− 2.5k = n− 7− 2.5k + 5 ≥ 1.5 and since this is a minimal graph we have
minimal valence at least 2 by induction.
Consequently, if any vertex v in G is preferred, the situation has to be as in

figure 10.
It is clear from this figure that there are exactly 3 pentagons passing through each

vertex v in G. Thus the total number of pentagons is 3n/5 (since each pentagon
is counted five times) which implies that n is a multiple of 5. But 7n = 20k + 2
implies that n ≡ 1mod 5. Thus the graph G cannot exist, and we have proved the
inequality.
To prove equality in the case 5k/2 < n < 3k, we must construct (3, k+1, n, 5n−

10k)-graphs. For low values of k the constructions are as follows:
k = 2: The only possibility is a (3, 3, 5, 5)-graph, which of course is a pentagon.
k = 3: The only possibility here is a (3, 4, 8, 10)-graph.
k = 4: The two possible parameter situations are (3, 5, 11, 15) and (3, 5, 12, 20).
k = 5: The possibilities are (3, 6, 13, 15) and (3, 6, 14, 20).
The graphs for k = 3, 4 and 5 are shown in figure 11.
For k ≥ 6 we consider the disjoint union of a pentagon and any minimum

(3, k − 1, n− 5)-graph H. By induction H has 5n−10k−5 edges since 5(k−2)/2 <
n− 5 < 3(k − 2), so the graph thus obtained is a (3, k + 1, n, 5n− 10k)-graph.
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H2

v

H2

v

Figure 10. The graph G: The highlighted vertices are the sub-
graph F

(3,5,11,15)
(3,5,12,20)

(3,6,13,15) (3,6,14,20)

(3,4,8,10)
(3,5,11,15)

(3,5,12,20)

(3,6,13,15) (3,6,14,20)

(3,4,8,10)

Figure 11. (3, k + 1, n, 5n− 10k)-graphs for k = 3, 4 and 5

For the case n = 3k we introduce a family of graphs known as bicycles. (The
name was coined by Backelin). The bicycle BCm,m ≥ 4, is defined as the graph on
the 3m vertices u1, ..., um, v1, ..., vm, ..., w1, ..., wm and with the 5m edges {ui, vi},
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{ui, wi}∀i and {wi, wj}, {wi, vj}, {vi, uj} for j−i ≡ 1modm. BCm has 3m vertices,
5m edges, and no triangles, so to prove that BCm is a (3,m+ 1, 3m, 5m)-graph we
must show that it has no independent set of size m+ 1. We do this by examining
the 4-cycles {wk, wk+1, vk, uk}, call them Ck. Any independent set I can contain at
most two vertices from any Ck. But if wk and vk are both in I, then Ck−1 cannot
contain any other independent vertices than wk. Denote the number of independent
vertices contributed to I in this way by α.Similarly, if wk+1 and uk are both in I,
then there can be no other contribution from Ck+1. Denote the number of vertices
contributed in this way by β. All of the other Ck’s can at most contribute one
vertex to I, and there are k − α− β of them. Thus, |I| ≤ α + β + k − α− β = k,
and thus there can be no independent set of size k + 1. BCm is a minimum graph
since e = 5m = 5(3m) − 10m = 5n − 10k which is exactly the lower bound given
by our theorem.

v3

u2

v2

u1v1

u3
v4

u4

v5

u5w2

w5

w4

w3

w1

v3

u2

v2

u1v1

u3
v4

u4

v5

u5w2

w5

w4

w3

w1

Figure 12. The bicycle BC5

Theorem 8. (Radzisowski/Kreher 1991)
e(3, k + 1, l) ≥ 6n− 13k for all k, n > 0
This theorem was proved by Radziszowski and Kreher in [9], using similar meth-

ods as for the above theorem. It is included in FRANK for completeness and
influences higher estimates of bounds for e-numbers, but is not necessary for the
work done in the following section.

Theorem 9. (Backelin)
e(3, k + 1, l) ≥ (40n− 91k)/6 for all k, n > 0
This was proved by Backelin in [1]. It improves some e-number bounds for k ≥ 11

and is also included in FRANK.
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5. A new bound for R(3,12)

In this chapter we improve the bound R(3, 12) ≤ 60 to R(3, 12) ≤ 59, mainly by
proving that the bound (3, 11, 48) ≥ 214 can be sharpened to 215. All values and
bounds used in this chapter are those calculated by FRANK, using as input values
from [3], [4], [5], [6], [7] and [8]. Many of the techniques used here could of course
be used to improve other similar bounds.

5.1. Basic techniques. The delta inequality, theorem 6, can be used to calculate
bounds on the degrees of vertices in an (x, y)-graph as follows:
We begin by calculating the central valence configuration: The valence configu-

ration that gives us the most even distribution of valences possible, with at most
two different valences (which must be consecutive).
We know that any valence configuration must satisfy the following two equations

(vi is the number of vertices of degree i):½ P
vi = nP
ivi = 2e

(The first equation simply sums all the vertices, and the second comes from the
fact that if we count the total number of edges incident to each vertex, we will have
counted each edge twice.)

For the central valence configuration, we have at most two consecutive valences
and this becomes½

vi + vi+1 = n
ivi + (i+ 1)vi+1 = 2e

which has the solution
i =

¥
2e
n

¦
, i+ 1 =

¥
2e
n

¦
+ 1, vi = n− vi+1, vi+1 =rem(2e/n)

We represent vertex configurations as vectors, where the number in position i
represents vi. Note that, since it is possible for a vertex to have valence 0, these
vectors have a zeroth position. (A simple example: a pentagon has the valence
configuration vector (0, 0, 5))
Now, if we have a vertex v with valence i in an (x, y)-graph G, we can calculate

the theoretical maximum value for the second valence deg2(v). We note that this
theoretical bound is given by e(G) − e(H2(v)), since if we prefer any vertex in an
(x, y)-graph, H2(v) has exactly e(G)−deg2(v) edges. In practice we of course often
do not know the exact value of e(H2(v)), but we can substitute a lower bound, call
it elb(H2(v)), since we are interested in the maximum possible value of deg2(v). But
we also know that for any vertex v in any graph,

P
v
deg2(v) =

P
v
(deg(v))2. If we

now replace deg2(v) with our theoretical maximum bound, we have the following:P
v
(e(G) − elb(H2(v)) − (deg(v))2) ≥ 0. We will call this the delta surplus for

G, since if we have exact values this is the delta inequality, theorem 6. This delta
surplus is convenient for keeping track of the possible valence configurations in an
(x, y, n)-graph, since it provides an upper bound for the number of possible vertices
of different degrees. We must first show that the central valence configuration
discussed above is the configuration which gives the maximum delta surplus, and
for this we will need the following definition:

Definition 1. The sequence a1, ..., am is sufficiently convex if the following condi-
tion is satisfied: ai + ai−2 ≥ 2ai−1 − 2 for i = 3, ...,m.
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If we now have a sequence of lower bounds, which depend only on the valence of
v, for the various values of e(H2(v)) in an (x, y, n)-graph which is sufficiently convex,
this implies that adding deg(v)2 to each element in this sequence will produce a
sequence which is convex. Now this implies that the sequence e(G) − e(H2(v)) −
(deg(v))2 is concave, so the maximum delta surplus is given by the central valence
configuration.

5.2. Investigation of R(3, 12). From our tables of results we can see that if
e(3, 12, 59) 6= ∞, then 322 ≤ e(3, 12, 59) ≤ 324. Since this is a relatively small
interval it seems feasible to investigate all the possible graphs by hand. For each
possible configuration, we prefer a vertex v and examine the number of edges in
H2, which we denote by e(H2). Since we know that H2 must be a (3, 11)-graph on
59−deg(v) − 1 vertices (we have removed the vertex v and its deg(v) neighbors),
we can compare e(H2) with our tabulated values for e(3, 11, 59−deg(v)− 1) to see
which configurations are possible.
For e = 324 there is only one possible valence configuration: (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 58).

Preferring the 10-valent vertex gives e(H2) ≤ 324− (10 ∗ 11) = 214.
For e = 323 there are three possibilities:
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 58):
If we prefer the 8-valent vertex then e(H2) ≤ 323−(8∗11) = 235 but e(3, 11, 50) ≥

242, so this configuration cannot be possible.
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 57):
If we prefer the 9-valent vertex then e(H2) ≤ 323 − (9 + 8 ∗ 11) = 226 but

e(3, 11, 49) ≥ 228.
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 56):
The three 10-valent vertices cannot form a triangle, so at least one of them must

have no more than one other 10-valent neighbor. If we prefer this vertex then
e(H2) ≤ 323− (10 + 9 ∗ 11) = 214.
For e = 322 there are exactly seven possible valence configurations:
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 58):
If we prefer the 6-valent vertex then H2 would be a (3, 11, 52)-graph, which we

know is impossible (e(3, 11, 52) =∞).
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 57):
Preferring the 7-valent vertex gives e(H2) ≤ 322 − (10 + 6 ∗ 11) = 246 but

e(3, 11, 51) ≥ 255.
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 57)
Preferring the 8-valent vertex gives e(H2) ≤ 322 − (9 + 7 ∗ 11) = 236 but

e(3, 11, 50) ≥ 242.
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 56)
Preferring the 8-valent vertex gives e(H2) ≤ 322 − (2 ∗ 10 + 6 ∗ 11) = 236 but

e(3, 11, 50) ≥ 242.
(0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 56):
Preferring a 9-valent vertex gives e(H2) ≤ 322 − (9 + 10 + 7 ∗ 11) = 226 but

e(3, 11, 49) ≥ 228.
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 55):
Preferring the 9-valent vertex gives e(H2) ≤ 322 − (3 ∗ 10 + 6 ∗ 11) = 226 but

e(3, 11, 49) ≥ 228.
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 54):
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We observe that G10, the induced subgraph consisting of the 10-valent vertices,
must contain at least one vertex with degree 2 or less by Turàn’s theorem. Preferring
this vertex gives e(H2) ≤ 322− (2 ∗ 10 + 8 ∗ 11) = 214.
In other words, if there is a (3, 12)-graph on 59 vertices then H2(v) for any

vertex v in this graph must be a (3, 11, 48, 214)-graph, so if we can prove that
e(3, 11, 48) > 214 , then e(3, 12, 59) must be ∞, which implies that R(3, 12) must
be ≤ 59.

5.3. Improving the bound for e(3, 11, 48). In this section we will prove the
nonexistence of a (3, 11, 48, 214)-graph by similar methods as used above. To keep
track of the configurations we use a technique called delta surplus investigation.

• The central valence configuration given by the equations in section 5.1 is i =
b2 ∗ 214/48c = 8, i+ 1 = 9, vi = 4, vi+1 = 44, or (0, 0, 0, 0, 0, 0, 0, 0, 4, 44, 0).
This configuration gives a delta surplus of

P
v
(e(G)−e(H2(v))−(deg(v))2) =

4 ∗ ((214− 145)− 82) + 44((214− 133)− 92) = 20.
• Now, we examine the cost for vertices of different degrees. We create a table
which corresponds to the bracketed expression on the right-hand side of the
delta inequality. We start with the best known estimates of e(3,10,48-i-1) (the
maximum degree for any vertex is of course 10 since a vertex with degree 11
in a triangle-free graph would give us an independent 11-set):
(∞,∞,∞,∞,∞, 182, 169, 156, 145, 133, 123)
Now we can add i2 to each estimate, which ensures that we have convexity

since the finite part of the degree sequence is sufficiently convex.
(∞,∞,∞,∞,∞, 182+ 52, 169+ 62, 156+ 72, 145+ 82, 133+ 92, 123+ 102)

= (∞,∞,∞,∞,∞, 207, 205, 205, 209, 214, 223)
Now we can calculate the cost for a vertex of degree v: For example if

we have a vertex of degree 7, the simplest possible configuration would be
(0, 0, 0, 0, 0, 0, 0, 1, 2, 45, 0). The delta surplus in this case is 1 ∗ ((214− 156)−
49) + 2 ∗ (214 − 145) − 64) + 45 ∗ (214 − 133) − 81) = 19. Since we had a
maximum delta surplus of 20, we can express this as ”the cost for a vertex of
degree 7 is 1”. Similar calculations for vertices of other degrees give us the
following ”cost table”:

Degree: ≤ 4 5 6 7 8 9 10
Cost: ∞ 13 6 1 0 0 4

• From the above table we can immediately draw conclusions about the possible
vertex configurations, for example we can see that there can be at most one
vertex of degree 5, since otherwise we would have a cost that is higher than
the maximum possible surplus of 20.

• The next step is to examine all the possible vertex combinations to see
if they are possible (3,11)-graphs. The goal is of course to eliminate all
the possible configurations, which leads to the conclusion that there are no
possible(3, 11, 48)-graphs with 214 edges, and thus e(3, 11, 48) ≥ 215. Our
main method is the same as in the previous section: we examine the num-
ber of edges in H2 when a vertex v is preferred, and show that this leads to
a contradiction in each case. We have that deg2(v) + e(H2) = e and thus
deg2(v) = e − e(H2). Thus, if deg2(v) is greater than 214 minus the bound
for e(H2) given in our tables then that particular configuration is impossible.
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• We begin by examining the configurations which contain a vertex of degree
5. For such a configuration to be possible we must have deg2(v) ≤ 214 −
e(3, 10, 42) = 214− 182 = 32. We know from the cost calculations above that
there are only two possible cases when we have a vertex of degree 5: either
we have one vertex of degree 6, and in that case no more than one vertex of
degree 7, or no vertices of degree 6 and at most 7 of degree 7. In the first case,
preferring the vertex of degree 5 would give us deg2(v) ≥ 6 + 7 + 3 ∗ 8 = 37.
The second case gives us deg2(v) ≥ 5 ∗ 7 = 35. Thus, there are no possible
(3, 11, 48)-graphs on 214 edges that contain a vertex of degree 5.

• We now continue with vertices of degree 6. From the table above, we can
see that there can be at most three vertices of degree 6. To keep track of the
separate cases we use the notation vi for the number of vertices of degree i. If
we have exactly three vertices of degree 6, the equations discussed in section
5.1 together with the fact that we can have at most an additional cost of 2
(since the vertices of degree 6 give a total cost of 18) give us the following
system: 7v7 + 8v8 + 9v9 + 10v10 = 428− 3 ∗ 6

v7 + v8 + v9 + v10 = 48− 3
v7 + 4v10 ≤ 20− 3 ∗ 6

From this we can see immediately that v10 = 0, so we have no vertices of
degree 10. The rest of the system reduces to½

2v7 + v8 = −5
v9 = 45− v7 − v8

which has no non-negative solutions. Thus we have eliminated the possi-
bility of three 6-valent vertices. Two 6-valent vertices give the system 7v7 + 8v8 + 9v9 + 10v10 = 428− 2 ∗ 6

v7 + v8 + v9 + v10 = 48− 2
v7 + 4v10 ≤ 20− 2 ∗ 6

and we can see that v10 must be either 0, 1 or 2. For v10 = 0 there
are no solutions, while v10 = 1 and v10 = 2 give the possible configurations
(0, 0, 0, 0, 0, 0, 2, 0, 1, 44, 1) and (0, 0, 0, 0, 0, 0, 2, 0, 0, 44, 2) respectively. In each
of these, we can prefer a vertex of degree 6 and calculate deg2(v) as above.
Since e(3, 10, 41) ≥ 169 we know that for a configuration to be possible we
must have deg2(v) ≤ 214 − 169 = 45. For the first configuration above,
deg2(v) ≥ 6+ 8+4 ∗ 9 = 50 (we have removed as few edges as possible). The
second case gives us deg2(v) ≥ 6+5∗9 = 51 so this is not a possibility either.
Exactly one 6-valent vertex would give the system 7v7 + 8v8 + 9v9 + 10v10 = 428− 6

v7 + v8 + v9 + v10 = 48− 1
v7 + 4v10 ≤ 20− 6

which after some calculation gives us the possible configurations
(0, 0, 0, 0, 0, 0, 1, 0, 1, 46, 0), (0, 0, 0, 0, 0, 0, 1, 0, 2, 44, 1), (0, 0, 0, 0, 0, 0, 1, 1, 0, 45, 1),
(0, 0, 0, 0, 0, 0, 1, 0, 3, 42, 2), (0, 0, 0, 0, 0, 0, 1, 1, 1, 43, 2), (0, 0, 0, 0, 0, 0, 1, 0, 4, 40, 3),
(0, 0, 0, 0, 0, 0, 1, 1, 2, 41, 3), and (0, 0, 0, 0, 0, 0, 1, 2, 0, 42, 3)
Preferring the 6-valent vertex, we can see that the smallest possible value

for deg2(v) is
7+2∗8+3∗9 = 50 (this is given by both the sixth and seventh configuration

in the above list) and since deg2(v) had to be less than 45 we see that there
are no possible configurations with exactly one 6-valent vertex.
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• We now examine configurations with only vertices of degree 7 or higher. If
we prefer a vertex of degree 7, H2 must be a (3, 10, 41)-graph and thus have
at least e(3, 10, 41) ≥ 156 edges, and so deg2(v) ≤ 214− 156 = 58. 7v7 + 8v8 + 9v9 + 10v10 = 428

v7 + v8 + v9 + v10 = 48
v7 + 4v10 ≤ 20

If we have at least one vertex with degree 7, this means that we can have
at most four with degree 10. Then there are four possible configurations:
(0, 0, 0, 0, 0, 0, 0, 4, 0, 40, 4), (0, 0, 0, 0, 0, 0, 0, 3, 2, 39, 4), (0, 0, 0, 0, 0, 0, 0, 2, 4, 38, 4)
and (0, 0, 0, 0, 0, 0, 0, 1, 6, 37, 4).
(0, 0, 0, 0, 0, 0, 0, 4, 0, 40, 4): It would seem at first that deg2(v) ≥ 3 ∗ 7+4 ∗

9 = 57 which would mean that this configuration is possible. However, we can
observe that it is not possible for all of the vertices of degree 7 to have three
other 7-valent vertices as neighbors, since then these vertices would form a
4-clique. Thus we can be certain that at least one of the 7-valent vertices has
no more than two 7-valent neighbors, which gives us deg2(v) ≥ 2∗7+5∗9 = 59
and we have eliminated this configuration.
(0, 0, 0, 0, 0, 0, 0, 3, 2, 39, 4): The 7-valent vertices cannot form a triangle,

and so at least one of them has no more than one 7-valent neighbor. Preferring
this vertex gives us deg2(v) ≥ 7 + 2 ∗ 8 + 4 ∗ 9 = 59
(0, 0, 0, 0, 0, 0, 0, 2, 4, 38, 4): For deg2(v) to be less than or equal to 58, a 7-

valent vertex must have the other 7-valent vertex and at least three of the four
8-valent vertices as neighbors. However, if we have exactly this situation then
we can prefer the other 7-valent vertex, which gives us deg2(v) ≥ 7+8+5∗9 =
60. (See figure 13)
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Figure 13. The first vertex of degree 7 has deg2(v) ≤ 58, but the
circled vertex must then have deg2(v) at least 60.

• (0, 0, 0, 0, 0, 0, 0, 1, 6, 37, 4): There are several possibilities here. If the 7-valent
vertex has all of the 8-valent vertices as neighbors, then deg2(v) = 6 ∗ 8+9 =
57. To see that this is not a possibility we can instead prefer one of the 8-valent
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vertices, which then has deg2(v) ≥ 7+ 7 ∗ 9 = 70 > 214− e(3, 10, 39) = 69. If
the 7-valent vertex instead has only five 8-valent neighbors, then we have two
possible cases: Either one of these vertices has no other 8-valent neighbor, in
which case we can prefer this vertex and deg2(v) ≥ 70 as above, or all of the
five have the same 8-valent neighbor (since there are only six totally). But
preferring the 7-valent vertex here would remove all of the gray edges in the
figure, and this would leave us with a vertex with valence ≤ 3 in H2. But H2
is a (3,10,39,145)-realizer, and it is possible to prove that such a graph can
have no vertices of degree less than 6. This proof is given in section 5.4.
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Figure 14. The 8-valent vertex on the right has degree less than
6 in H2

Three 10-valent vertices give the possible configurations
(0, 0, 0, 0, 0, 0, 0, 1, 5, 39, 3), (0, 0, 0, 0, 0, 0, 0, 2, 3, 40, 3) and (0, 0, 0, 0, 0, 0, 0, 3, 1, 41, 3).

The last one can be eliminated by taking into account that the three 7-valent
vertices cannot form a triangle, so there must be at least on of them that
has no more than one 7-valent neighbor. Preferring this vertex gives us
deg2(v) ≥ 7 + 8 + 5 ∗ 9 = 60. The first two require slightly more work:
in the first case, we note that for deg2(v) ≤ 58 for the vertex of degree 7, it
must have all of the 8-valent vertices as neighbors. In this case we can prefer
one of the 8-valent vertices and eliminate this case by the same argument used
previously: deg2(v) ≥ 7 + 7 ∗ 9 = 70. In the second case, a 7-valent vertex
with deg2(v) ≤ 58 would have the other 7-valent vertex and all of the three
8-valent vertices as neighbors, and exactly the same argument can be applied.
Two 10-valent vertices give the possibilities (0, 0, 0, 0, 0, 0, 0, 1, 4, 41, 2),
(0, 0, 0, 0, 0, 0, 0, 2, 2, 42, 2) and (0, 0, 0, 0, 0, 0, 0, 3, 0, 43, 2). These can easily

be eliminated; deg2(v) ≥ 4∗8+3∗9 = 59, 7+2∗8+4∗9 = 59 and 7+6∗9 = 61
respectively.
One 10-valent vertex gives us two possible configurations:
(0, 0, 0, 0, 0, 0, 0, 1, 3, 41, 1) and (0, 0, 0, 0, 0, 0, 0, 2, 1, 44, 1). Each of these

gives deg2(v) ≥ 60 so we can eliminate these.
There are also two possible configurations with no 10-valent vertices:
(0, 0, 0, 0, 0, 0, 0, 1, 2, 45) and (0, 0, 0, 0, 0, 0, 0, 2, 0, 46), but these each give

deg2(v) ≥ 61.
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• There is only one possible configuration with only vertices of degrees exactly
8 or 9: (0, 0, 0, 0, 0, 0, 0, 0, 4, 44). For this to be possible deg2(v) would have to
be ≤ 214 − e(3, 10, 39) = 69. We know that at least one of the four 8-valent
vertices has two or less 8-valent neighbors, since otherwise we would have a
triangle, and if we prefer this vertex we get deg2(v) ≥ 2 ∗ 8 + 6 ∗ 9 = 70, so
this is not a possibility.

• We now examine configurations with vertices of degree 10 (and no vertices of
lower degree than 8 since these have already been eliminated). One 10-valent
vertex gives us (0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 42, 1) as the only possible configuration.
Preferring an 8-valent vertex, we see that deg2(v) ≤ 69.By the same argument
we have used above, there must be at least one vertex among the five 8-valent
vertices that has no more than two 8-valent neighbors (the induced subgraph
formed by the 8-valent vertices can at most be K2,3). Preferring this vertex
gives deg2(v) ≥ 2 ∗ 8 + 6 ∗ 9 = 70.
Two 10-valent vertices give the configuration (0, 0, 0, 0, 0, 0, 0, 0, 6, 40, 2). If

we examine G8, the induced subgraph on the 8-valent vertices, we can see
that the only possibility that does not immediately give us deg2(v) > 69 is if
G8 = K3,3. But again H2 is a (3, 10, 39, 145)-realizer and thus has no vertices
of degree less than 6. (section 5.4) If we prefer any of the six vertices of degree
8 we have the situation shown in figure 15, and we can see that removing these
edges would leave us with two vertices in H2 which each have degree less than
6, and so we have eliminated this configuration.
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Figure 15. If G8 = K2,3 we have vertices in H2 with degree less
than 6

Three 10-valent vertices give us the configuration (0, 0, 0, 0, 0, 0, 0, 0, 7, 38, 3).
There are two cases where we do not have deg2(v) > 69 : either G8 has 11 or
12 edges. To eliminate these possibilities by a similar argument as in the pre-
vious case we need to show that there exists a vertex in G8 with deg2(v) = 69,
the removal of which would imply a vertex in H2 (which is a (3, 10, 39, 145)-
graph) with degree less than 6. In other words, we must show thatG8 contains
K2,3 as a subgraph. But if G8 is a graph on 7 vertices with 12 edges (and
no triangles) , then by Turàn’s theorem it must be isomorphic to K3,4, which
obviously contains K2,3 as a subgraph. If we have 11 edges slightly more
work is required: Assume that there is a graph G on 7 vertices with 11 edges
that contains no triangles and does not have K2,3 as a subgraph. We now
examine any induced subgraph H on 5 of the 7 vertices in G: by Turàn’s
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theorem H can have at most 6 edges, and is then isomorphic to K2,3, so if we
are to avoid K2,3 this means that there can be at most 5 edges in H. Now,
we can think of the graph G as being the blue edges in a blue-red coloring
of K7. Now each subgraph H, which is a blue-red K5, can contain at most 5
blue edges out of the 10 possible edges in K5. So in the entire graph G, the
number of blue edges can at most be equal to the number of red edges. But
this implies that there are at most

¥
21
2

¦
= 10 blue edges in total, and we have

a contradiction. Thus, if the graph G8 is triangle-free it must contain K2,3 as
a subgraph (and we can also see that since G8 has 11 edges there must be 6
vertices with degree 3 in G8, and so at least one of these must be part of the
subgraph K2,3) and we can prefer one of these three-valent vertices and are
left with a vertex in H2 with degree less than 6.
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8
8 8

8
8 H2

Figure 16. If G8 contatins K2,3 as a subgraph, preferring one of
the two vertices of degree 3 leaves a vertex with degree less than 6
in H2.

• For the two remaining configurations, (0, 0, 0, 0, 0, 0, 0, 0, 8, 36, 4) and
(0, 0, 0, 0, 0, 0, 0, 0, 9, 34, 5), we need to introduce a new trick.
We define the extra cost for a vertex as the difference between the maximum

possible valence and the actual valence, or
extra cost = e(H2)− e(3, y − 1, n−deg(v)− 1)
The total cost must be equal to the delta surplus, so in our situation we

know that for any configuration the sum of the basic costs and the extra costs
is 20.
So, if we have a vertex of valence 9 in our case, the extra cost is e(H2) −

e(3, 10, 48− 9− 1) = e(H2)− 133
which means that for each extra edge in H2 we have an extra cost of 1.

For e(H2) to be exactly 133,
deg2(v) = 81. We now examine the possible neighbors for a 9-valent vertex:

If we have one or more 8-valent vertices and no 10-valent vertices as neighbors,
then deg2(v) < 81 which would give an extra cost. If we allow both 8- and
10-valent vertices as neighbors we have the following picture:We see that the
circled vertices cannot form an independent set since there are 11 of them
in total, and thus there must be at least one edge between them, which is
dashed in the figure. (Since there can be no triangles, an edge between two of
the neighbors of the 9-valent vertex is not a possibility). In this situation it
could be that deg2(v) = 81, but we note that if we prefer the 9-valent vertex
then it’s 8-valent neighbor would have degree 6 or less in H2. However,
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this is impossible since a (3, 10, 38, 133)-graph must be 7-regular (the central
valence configuration is (0, 0, 0, 0, 0, 0, 0, 38) and we have equality in the delta
inequality, so since there is no delta surplus this must be the only possible
configuration). Thus all 9-valent vertices must have only 9-valent neighbors
or an extra cost of at least 1 if it has one or more 8-valent neighbors.

8
8
8

89

8
8
8

89

Figure 17. A 9-valent vertex with neighbors of other valencies
must have an extra cost

We now examine the two configurations.
(0, 0, 0, 0, 0, 0, 0, 0, 9, 34, 5):
This configuration has a basic cost of exactly 20, since each of the five

10-valent vertices contributes 4. This means that we can have no extra costs
at all. If we now examine G8 we see that each vertex must have deg2(v) ≤
214 − e(3, 10, 39) = 69, and since we have no 9-valent neighbors we can see
that the maximum number of 10-valent neighbors for any vertex in G8 is two.
Thus the minimum valence for G8 is ≥ 6, which means that G8 has at least
6∗9
2 = 27 edges. But by Turán’s theorem we know that the maximum number
of edges in a triangle-free graph on 9 vertices is

¡
9
2

¢− 3∗9+5∗1
2 = 20. Thus this

configuration is impossible.
(0, 0, 0, 0, 0, 0, 0, 0, 8, 36, 4):
Since the basic cost for this configuration is 16, we can have extra costs of

at most 4, and so we must prove that there are at least five 9-valent vertices
which have 8-valent neighbors. As above, we know that if we have an 8-
valent vertex with deg2(v) > 69 we can prefer this vertex and thus eliminate
this configuration, so the only possibility is for all 8-valent vertices to have
deg2(v) ≤ 69. If these vertices have no 9-valent neighbors, then they can have
at most two 10-valent neighbors and hence at least six 8-valent ones. But
by the same argument as above, this would mean that G8 has at least 6∗8

2

= 24 edges, but Turán’s theorem gives
¡
8
2

¢− 3∗8+5∗0
2 = 16. With at most two

10-valent neighbors, the only possibility for the second degree of the 8-valent
vertex is 4 ∗ 8 + 10 + 3 ∗ 9 = 69. However, this gives an extra cost of 3. In
this same situation, we examine one of this vertex’s 8-valent neighbors. It can
have no more than three other neighbors of degree 8 (since there are eight
8-valent vertices), and at most one neighbor of degree 10 since deg2(v) ≤ 69.
However, this leaves at least three vertices of degree 9 (which are different
from the previous 9’s since otherwise we would have a triangle) and thus an
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additional extra cost of three. Hence we have an extra cost of 6, which is
impossible.
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Figure 18. A subgraph which gives an extra cost of 6

• Thus, we have proved that there are no possible vertex configurations which
give us a (3, 11, 48)-graph with 214 edges, and so e(3, 11, 48) ≥ 215.

5.4. A proof that a (3, 10, 39, 145)-realizer has no vertices of degree less
than 6. By the same methods as above, we can calculate the costs for vertices of
different degrees. The total delta surplus is 15, and the cost table is as follows:

Degree: 4 5 6 7 8 9
Cost: 17 6 3 0 0 2
From this we can see that there can be at most two vertices of degree 5. Exactly

two would mean that we can have at most one vertex of degree 6, and preferring
one of the 5-valent vertices gives us e(H2) ≤ 145− (5 + 6+ 3 ∗ 7) = 113, which is a
contradiction since we know that e(3, 9, 33) ≥ 114.
Exactly one 5-valent vertex would mean that we can have no more than three of

degree 6, and we have e(H2) ≤ 145− (3 ∗ 6 + 2 ∗ 7) = 113, again a contradiction.
6. Computational Methods

All the computations in this paper have been carried out using the package
FRANK which we have developed in the programming language MATLAB. The
idea has been to keep all routines as modular as possible, to facilitate possible
additions later on. FRANK 1.0 can be downloaded from the authors website.
To keep track of all the information needed, we have defined data structures as

follows:
Each Ramsey number R(x,y) is represented as an entry in a matrix of structures,

where the structures have the following fields.
x,y: x and y coordinates
ub: upper bound; the currently best known value for an upper bound of R(x, y)
lb: lower bound
exact: 1 if the Ramsey number is exact, i.e. if ub=lb, 0 otherwise
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ubinfo: a text string containing information about which methods were used to
calculate upper-bound values
lbinfo: information about lower-bound values
The bounds for the numbers e and E are stored in a similar matrix, which has

the following fields:
x,y,n: coordinates
elb: lower bound for e
eub: upper bound for e
exact: 1 if elb=eub
Elb: lower bound for E
Eub: upper bound for E
Exact: 1 if Elb=Eub
info: a text string as for Ramsey numbers
graph: a graph object
minmaxval: the maximum and minimum possible values for valences in the

graph, if known
The two last fields are not currently used by any of the routines, but have been

left in for possible use in future versions.
Graphs are represented as objects, with the main field of a graph object being its

adjacency matrix. (The adjacency matrix for a graph on n vertices is a symmetric
n-by-n matrix of 1’s and 0’s with a 1 in position i,j if there is an edge between
vertices i and j.)
Calculations are performed in two stages; the user first creates the two storage

matrices above (which are then stored as global variables), and can then apply
the various theorems given above or change values manually. When the matrices
are initialized, the trivial values of R, e and E given in section 4.4 are added. The
functions updatee and updater implement the recursions described in chapter 4, and
perform checks to see if any new exact values have been found by upper and lower
bounds coinciding, or, in the case of e-numbers, if any new values have become
∞ by for example the lower bound surpassing the upper bound. The theorems
in section 4.4 are also implemented in the code, and are typically used together
with the update routines. It is also possible to change values manually, and for
convenience some of the published bounds for e have been collected in files so that
these can be added.
At least one new bound can be obtained immediately using these routines: The

previously published bound R(3, 15) ≤ 89 is sharpened to 88.

7. Appendix A: Programming routines

This appendix contains a quick reference guide for FRANK version 1.0, and a
sample session to show how the software can be used.

7.1. Quick reference. This section contains all the help files for FRANK 1.0.
AL Lesser values for elbnumbers

AL manually updates two values for lower
bounds for e, from "Theoretical and
computational aspects of Ramsey Theory’’.
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Other values which may be influenced
are not updated, use UPDATEE.

DISPE display an e number structure

DISPE(X,Y,N) displays the entry
in position (X,Y,N) in the global
variable ETABLE

DISPR display a Ramsey number structure

DISPR(X,Y) displays the entry
in position (X,Y) in the global
variable RTABLE

EELBTABLE Lower bounds for E numbers

T=EELBTABLE(X) extracts a y-by-n table
of lower bounds for E numbers E(X,y,n)
from the global variable ETABLE

EEUBTABLE Upper bounds for E numbers

T=EEUBTABLE(X) extracts a y-by-n table
of upper bounds for E numbers E(X,y,n)
from the global variable ETABLE

EEXETABLE Exact values of E numbers

T=EEXETABLE(X) extracts a y-by-n table
of exact values for E numbers E(X,y,n)
from the global variable ETABLE

ELBTABLE Lower bounds for e numbers

T=ELBTABLE(X) extracts a y-by-n table
of lower bounds for e numbers e(X,y,n)
from the global variable ETABLE

ENUMBERTABLE create global variable RTABLE

ENUMBERTABLE(xmax,ymax,nmax) creates
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the global variable ETABLE:
an xmax-by-ymax-by-nmax matrix of structures
of e-numbers and E-numbers for two-color
classical Ramsey numbers.
The structures have twelve fields:
et.x, et.y and et.n are the parameters e(x,y,n).
et.elb is the largest known lower bound for e.
et.eub is the upper bound for e.
et.Elb and et.Eub are lower and upper bounds for E.
et.exact is true if elb=eub.
et.Exact is true if Elb=Eub.
et.info is a text string
with information on how the values
were calculated.
et.graph is a graph object
et.minmaxval is a vector containing the minimum
and maximum possible valences for a realiser.

EUBTABLE Upper bounds for e numbers

T=EUBTABLE(X) extracts a y-by-n table
of upper bounds for e numbers e(X,y,n)
from the global variable ETABLE

EXETABLE Exact table of e numbers

T=EXETABLE(X) extracts a y-by-n table
of exact values for e numbers e(X,y,n)
from the global variable ETABLE

EXRTABLE Exact table of ramsey numbers

T=EXRTABLE creates a table of exact bounds
for traditional two-color Ramsey numbers
R(x,y) from the global variable RTABLE

GR Grinstead-Roberts values for e-numbers

GR manually updates values for lower
bounds for e, Grinstead-Roberts’ 1988
paper. Other values which may be influenced
are not updated, use UPDATEE.

GY Graver-Yackel values for elbnumbers
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GY manually updates values for lower
bounds for e, from Graver-Yackel’s 1968
paper. Other values which may be influenced
are not updated, use UPDATEE.

JB Backelin values for elbnumbers

JB manually updates values for lower
bounds for e, from Backelin’s 2000
manuscript. Other values which may be
influenced are not updated, use UPDATEE.

LORTABLE Lower table of Ramsey numbers

T=LORTABLE extracts a table of lower
bounds for Ramsey numbers R(x,y)
from the global variable RTABLE

MANUALELB manually update a value of elb

MANUALELB(X,Y,N,ELB,INFO) sets
ETABLE(X,Y,N).elb to ELB and adds
the string INFO to ETABLE(X,Y,N).info

MANUALR manually change a value in the ramsey table RTABLE

MANUALR(X,Y,N) changes the value of
R(X,Y) (AND R(Y,X)!) to be exactly N
MANUALR(X,Y,LB,UB) changes the lower
and upper bounds to LB and UB.
The exact field and the info-fields are updated.

RAMEYTABLE create global variable RTABLE

RAMSEYTABLE(xmax,ymax) creates
the global variable RTABLE:
an xmax-by-ymax matrix of structures
of two-color classical Ramsey numbers.
The structrures have seven fields:
rt.x and rt.y are the parameters R(x,y),
rt.lb is the largest known lower bound,
rt.ub is the upper bound, and rt.exact is true if
lb=ub. rt.ubinfo and rt.lbinfo are text strings
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with information on how the values
were calculated.

RK Radziszowski-Kreher values for elbnumbers

RK manually updates values for lower
bounds for e, from Radziszowski and
Kreher’s 1988 paper. Other values which
may be influenced are not updated, use UPDATEE.

THEOREM7 exact values for enumbers

THEOREM7 uses theorem 7 from "Theoretical
and computational aspects of Ramsey Theory"
to calculate exact values of e(3,i+1,n).

THEOREM8 lower bounds for enumbers

THEOREM8 uses theorem 8 from ’’Theoretical
and computational aspects of Ramsey Theory’’,
which is from Radzisowski/Krehers 1991
paper, and an improvement proved by Backelin

THEOREM9 lower bounds for enumbers

THEOREM9 uses Backelins as yet unpublished
theorem, theorem 9 from "Theoretical and
Computational aspects of Ramsey Theory’’ to
improve lower bounds for e-numbers.

TURAN upper bounds for E-numbers

TURAN uses Turan’s theorem to improve
values of Eub in the global variable
ETABLE

UPDATEE Update the global enumbertable ETABLE

UPDATEE uses several recursive techniques
to improve bounds for e- and E-numbers.
theorem 4 and the delta inequality
are used to calculate lower bounds for e.
The bounds for E are adjusted so that
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they agree with the bounds for e, for
example if elb=n then we know that
Elb must be greater than or equal to n.
Updatee also checks whether any new values
have become exact by upper and lower bounds
coinciding, and whether any values have
lower bounds that are greater than upper
bounds, in which case the number cannot
exist and is set to Inf.

UPDATER update the global ramsey table

UPDATER performs a number of simple checks
to improve bounds: First RTABLE is compared
to ETABLE to see if any new bounds have been

found, then all values are tested with the simplest
upper- and lower bound recursions.
Finally, a check is performed to see if any
new exact values have been produced.

UPRTABLE upper table of Ramsey numbers

T=UPRTABLE extracts a table of upper
bounds for Ramsey numbers R(x,y)
from the global variable RTABLE

7.2. A sample session. The following is a short example showing how some of
the features of FRANK can be used.
We begin by creating a 7-by-7 table of Ramsey values. In its initial state the

only values given are the trivial values R(x, 2) = R(2, y) = y.
» ramseytable(7,7)

”Exrtable ” extracts a table of the exact Ramsey values currently known from
this table.
» exrtable
ans =
0 0 0 0 0 0 0
0 2 3 4 5 6 7
0 3 0 0 0 0 0
0 4 0 0 0 0 0
0 5 0 0 0 0 0
0 6 0 0 0 0 0
0 7 0 0 0 0 0

Next we create a 3-by-7-by-23 table of bounds for e and E, and update it
» enumbertable(3,7,23)
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» updatee

”Elbtable ” gives a table of lower bounds for e(x, y, n) for a fixed x, so for x = 3
we have
» elbtable(3)
ans =
Inf 0 0 0 0 0 0
Inf 1 0 0 0 0 0
Inf Inf 1 0 0 0 0
Inf Inf 2 1 0 0 0
Inf Inf 5 2 1 0 0
Inf Inf Inf 3 2 1 0
Inf Inf Inf 6 3 2 1
Inf Inf Inf 10 4 3 2
Inf Inf Inf Inf 7 4 3
Inf Inf Inf Inf 10 5 4
Inf Inf Inf Inf 15 8 5
Inf Inf Inf Inf 20 11 6
Inf Inf Inf Inf 26 15 9
Inf Inf Inf Inf Inf 19 12
Inf Inf Inf Inf Inf 25 15
Inf Inf Inf Inf Inf 31 20
Inf Inf Inf Inf Inf 38 24
Inf Inf Inf Inf Inf 45 29
Inf Inf Inf Inf Inf Inf 35
Inf Inf Inf Inf Inf Inf 42
Inf Inf Inf Inf Inf Inf 49
Inf Inf Inf Inf Inf Inf 57
Inf Inf Inf Inf Inf Inf 66

We can also change values manually, for example we know from [1] that e(3, 6, 18) =
∞. The last argument to the function manualelb is a text string where the user
can add a comment to the text string ”info”:
» manualelb(3,6,18,Inf,’: Graver-Yackel’)

The command ”dispe ” is used to show all information for a particular e-number.
The text string ”info” shows a record of how different values were calculated, in-
cluding the comment added above.
» dispe(3,6,18)
ans =
x: 3
y: 6
n: 18
elb: Inf
eub: Inf
exact: 1
Elb: Inf
Eub: Inf
Exact: 1
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info: ’45:eub>Eub 45:delta 45:elb>Elb Inf:Graver-Yackel etoInf ’
graph: [1x1 graph]
minmaxval: [0 17]
We can now use the information contained in the e-number table to update our

Ramsey table, and then display the results (uprtable and lortable are tables of the
current best upper and lower bounds)
» updater
» exrtable

ans =
0 0 0 0 0 0 0
0 2 3 4 5 6 7
0 3 6 9 14 18 0
0 4 9 0 0 0 0
0 5 14 0 0 0 0
0 6 18 0 0 0 0
0 7 0 0 0 0 0
» uprtable
ans =
0 0 0 0 0 0 0
0 2 3 4 5 6 7
0 3 6 9 14 18 25
0 4 9 18 31 49 74
0 5 14 31 62 111 185
0 6 18 49 111 222 407
0 7 25 74 185 407 814
» lortable
ans =
0 0 0 0 0 0 0
0 2 3 4 5 6 7
0 3 6 9 14 18 21
0 4 9 13 19 24 28
0 5 14 19 28 36 42
0 6 18 24 36 42 54
0 7 21 28 42 54 63

8. Appendix B: table of e(3, y, n)

The following table contains the best values of e(3, y, n) which we have been able
to calculate using FRANK. The tablulated values are of three different types:
Values in boldface are caluclated values which are immediate consequences of

the trivial values mentioned in section 4.4, and by application of theorems 4 through
7.
Values with footnotes are as follows:
0. These two values are given by the calculations in section 5.
1. These values are from Backelins manuscript [1] and were calculated by hand.
3. These values were calculated by Graver and Yackel in [3], by preferring vertices

in the possible graphs and examining the number of edges left in H2.
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4. These results are due to Grinstead and Roberts, [4]. They have also used
the techniques described in [3] to obtain preliminary bounds for e, and have also
developed computer algorithms which, for a given vertex v in an (x, y)-graph G,
examine H2(v) and H1(v) and list all possible graphs which can be obtained from
joining H1(v) to H2(v) in such a way that the resulting graph is an (x, y)-graph.
5. McKay and Ke Min showed in [5] that every triangle-free graph on 28 vertices

must contain an independent set on 8 vertices, which implies that e(3, 8, 28) =∞.
This was done by a similar technique as in [7] which was arrived at independently.
Their algorithms work by extending all possible (7, 22), (7, 21) and (7, 20)-graphs
to attempt to produce an (8, 28)-graph if such a graph existed. Since no such graph
was found, they conclude that R(3, 8) = 28.
7. These values are from Radziszowski and Kreher’s 1988 papers, [7] and [8],

in which they make use of several computer algorithms to create a catalouge of
(3, y, n, e)-graphs up to y = 8. The basic technique is to use an implementation
of the delta inequality to determine if there are any possible solutions, and then
to apply an algorithm that they have designed called EXPAND; which given a
(3, k, n − d − 1, e−deg2(v))-graph constructs all (3, k + 1, n, e)-graphs which have
a vertex v of degree d. Preferring this vertex v thus gives the graph H2(v) which
must be isomorphic to the original graph.

8. These values are given by theorem 8, which Radziszowski and Kreher proved
in [9]. In some cases the bounds have been sharpened by using an improvement
of this theorem proved by Backelin in [1]; by characterising the possible graphs he
proves that the inequality in theorem 8 is strict if 4n > 13k − 4 and 4n 6= 13k.
9. These values are given by theorem 9, proved by Backelin in [1].
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